Total Synthesis of (3S, 6S)- (+)-3,7-Dimethyl-3-acetoxy-6-hydroxy-octa-1,7-diene

Zuo Sheng LIU, Jiong LAN, Yu Lin LI*

National Laboratory of Applied Organic Chemistry and Institute of Organic Chemistry, Lanzhou University, Lanzhou, 730000

Ya Cheng XING, Wen CEN

Department of Chemistry, Qingdao University, Qingdao, 266071

Abstract: A total synthesis of (3S, 6S)- (+)-3,7-dimethyl-3-acetoxy-6-hydroxy-octa-1,7-diene *via* the rearrangement of chiral 2,3-epoxy alcohol, with the system of Ph_3P , pyridine, I_2 and H_2O , is described.

Keywords: 2,3-Epoxy alcohol, rearrangement synthesis.

Compound 1^1 , a novel monoterpenoid, was isolated from *Mutisia spinosa* (Compositae). The structure of **1**, determined by spectroscopic techniques, corresponded to 3,7-dimethyl-3-acetoxy-6-hydroxy-octa-1,7-diene (the name of 6-hydroxy-7(9)-dehydro-6,7-dihydroneryl acetate in reference 1 is uncorrect). However the absolute configurations at C-3 and C-6 were not determined. Compound **1** was synthesized by photooxidation of linalyl acetate², however the authors obtained the isomer mixture of **1**. Herein we report the total synthesis of (3S, 6S)- (+)-**1** from geraniol **2** through six steps (**Scheme 1**).

Reagents and conditions: a) Ti (OⁱPr)₄, *t*-BuOOH, L- (+)-DET, CH₂Cl₂, 4Å molecular siere, CaH₂, Silica gel, -40~-20 °C, 5 h, 91%; b) Ph₃P, I₂, pyridine, Et₂O/CH₃CN (5/3), 0 °C, 1 h, then 1

Zuo Sheng LIU et al.

equivalent H2O added, 38 °C, 10 h, 98%; c) Ac2O, Et3N, rt, 10 h, 70%; d) SeO2, t-BuOOH, CH₂Cl₂, rt, 2 h, 51%; e) Ti (OⁱPr)₄, t-BuOOH, L- (+)-DET, CH₂Cl₂, 4Å molecular sieve, CaH₂, Silica gel, -40~-20 °C, 5 h, 78%; f) Ph₃P, I₂, pyridine, Et₂O/CH₃CN (5/3), 0 °C, 1 h, then 1 equivalent H₂O added, 38 °C, 6 h, 90%.

Geraniol 2 was epoxized by Sharpless asymmetric epoxidation [L- (+)-DET was employed]³. By our method⁴, epoxide **3** was iodinated with Ph_3P (3 equivalent), pyridine (4 equivalent) and I2 (1.5 equivalent) in dry ether and CH3CN, then the iodide was converted to linalool 4 by addition of 1 equivalent H₂O. Thus linalool 4 was obtained in 98% yield and >95% e.e⁵.

Linalool 4 was protected with Ac₂O, Et₃N and DMAP, then SeO₂ oxidation gave allylic alcohol 5^6 . Sharpless asymmetric epoxidation³ of allylic alcohol 5 with L- (+)-DET led to 6S, 7S- and 6R, 7R-epoxy alcohol in a ratio of ca. 10:1. Rearrangement of epoxy alcohol 6 $[[\alpha]_D^{24}$ -6.4 (c 0.75, CHCl₃)] gave the title compound 1 in 90% yield as a colorless oil $[[\alpha]_D^{24} + 6.0 (c \ 0.80, \text{CHCl}_3)]$. The spectral data of the title compound **1** was compatible with the assigned structures⁷.

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant NO. 29672015)

References and Notes

- C. Zdero, F. Bohlmann, R. M. King, and H. Robinson, Phytochemistry, 1986, 25, 509. 1
- R. Kaiser, and D. Lamparsky, Tetrahedron Lett., 1977, 7, 665. 2
- 3 a) T. Katsuki, and K. B. Sharpless, J. Am. Chem. Soc., 1980, 102, 5974. b) Z. M. Wang, and W. S. Zhou, Tetrahedron, 1987, 43, 2935.
- 4 Z. S. Liu, J. Lan, and Y. L. Li, Tetrahedron: Asymmetry, 1998, 9, in press.
- The enantiomeric excess of linalool was measured by 400M ¹HNMR analysis with Eu (hfc)₃. 5
- 6
- M. Unbriet, and K. B. Sharpless, J. Am. Chem. Soc., 1977, 99, 5526.
- spectral data:
 - Compound 1: $[\alpha]_{D_{1}}^{24}$ +6.0 (c 0.80, CHCl₃). IR: 3435, 3075, 2974, 2941, 1736, 1647, $1251,1020, 901 \text{ cm}^{-1}$. EIMS (*m*/*z*): 152 (0.4%, M-HOAc), 137 (4), 109 (5), 93 (7), 71 (58), 67 (65), 55 (23), 43 (100). ¹HNMR (400MHz,CDCl₃): δ (ppm) 5.93 (dd, J=17.4Hz, J=10.9Hz, 1H, CH=), 5.14 (d, J=17.4Hz, 1H, CH=), 5.11 (d, J=10.9Hz, 1H, CH=), 4.93, 4.84 (s, 2H, CH₂=), 4.03 (t, J=6.4Hz, 1H, CHO), 2.00 (s, 3H, CH₃), 2.05-1.92 (m, 2H, CH₂), 1.82-1.77 (m, 2H, CH₂), 1.70 (s, 3H, CH₃), 1.53 (s, 3H, CH₃). ¹³CNMR (100MHz, CDCl₃): δ (ppm) 169.93, 147.06, 141.51, 113.28, 111.39, 82.73, 75.77, 35.65, 28.68, 23.63, 22.33, 17.33.

Received 18 August 1998