Total Synthesis of (3S, 6S)- (+)-3,7-Dimethyl-3-acetoxy-6-hydroxy-octa-1,7-diene

Zuo Sheng LIU, Jiong LAN, Yu Lin LI*
National Laboratory of Applied Organic Chemistry and Institute of Organic Chemistry, Lanzhou University, Lanzhou, 730000
Ya Cheng XING, Wen CEN
Department of Chemistry, Qingdao University, Qingdao, 266071

Abstract

A total synthesis of (3S, 6S)- (+)-3,7-dimethyl-3-acetoxy-6-hydroxy-octa-1,7-diene via the rearrangement of chiral 2,3-epoxy alcohol, with the system of $\mathrm{Ph}_{3} \mathrm{P}$, pyridine, I_{2} and $\mathrm{H}_{2} \mathrm{O}$, is described.

Keywords: 2,3-Epoxy alcohol, rearrangement synthesis.

Compound $\mathbf{1}^{1}$, a novel monoterpenoid, was isolated from Mutisia spinosa (Compositae). The structure of $\mathbf{1}$, determined by spectroscopic techniques, corresponded to 3,7-dimethyl-3-acetoxy-6-hydroxy-octa-1,7-diene (the name of 6-hydroxy-7(9)-dehydro-6,7dihydroneryl acetate in reference 1 is uncorrect). However the absolute configurations at C-3 and C-6 were not determined. Compound $\mathbf{1}$ was synthesized by photooxidation of linalyl acetate ${ }^{2}$, however the authors obtained the isomer mixture of $\mathbf{1}$. Herein we report the total synthesis of (3S, 6S)-(+)-1 from geraniol $\mathbf{2}$ through six steps (Scheme 1).

Scheme 1

Reagents and conditions: a) $\mathrm{Ti}\left(\mathrm{O}^{\mathrm{i}} \mathrm{Pr}\right)_{4}, t-\mathrm{BuOOH}, \mathrm{L}-(+)-\mathrm{DET}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 4 \AA$ molecular siere, CaH_{2}, Silica gel, $-40 \sim-20{ }^{\circ} \mathrm{C}, 5 \mathrm{~h}, 91 \%$; b) $\mathrm{Ph}_{3} \mathrm{P}, \mathrm{I}_{2}$, pyridine, $\mathrm{Et}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}(5 / 3), 0{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$, then 1
equivalent $\mathrm{H}_{2} \mathrm{O}$ added, $38{ }^{\circ} \mathrm{C}, 10 \mathrm{~h}, 98 \%$; c) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{rt}, 10 \mathrm{~h}, 70 \%$; d) $\mathrm{SeO}_{2}, t-\mathrm{BuOOH}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 2 \mathrm{~h}, 51 \%$; e) $\mathrm{Ti}\left(\mathrm{O}^{\mathrm{i}} \mathrm{Pr}\right)_{4}, t-\mathrm{BuOOH}, \mathrm{L}-(+)-\mathrm{DET}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 4 \AA$ molecular sieve, CaH_{2}, Silica gel, $-40 \sim-20{ }^{\circ} \mathrm{C}, 5 \mathrm{~h}, 78 \%$; f) $\mathrm{Ph}_{3} \mathrm{P}, \mathrm{I}_{2}$, pyridine, $\mathrm{Et}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}(5 / 3), 0{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$, then 1 equivalent $\mathrm{H}_{2} \mathrm{O}$ added, $38^{\circ} \mathrm{C}, 6 \mathrm{~h}, 90 \%$.

Geraniol 2 was epoxized by Sharpless asymmetric epoxidation [L- (+)-DET was employed] ${ }^{3}$. By our method ${ }^{4}$, epoxide 3 was iodinated with $\mathrm{Ph}_{3} \mathrm{P}$ (3 equivalent), pyridine (4 equivalent) and I_{2} (1.5 equivalent) in dry ether and $\mathrm{CH}_{3} \mathrm{CN}$, then the iodide was converted to linalool 4 by addition of 1 equivalent $\mathrm{H}_{2} \mathrm{O}$. Thus linalool 4 was obtained in 98% yield and $>95 \%$ e.e ${ }^{5}$.

Linalool 4 was protected with $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}$ and DMAP, then SeO_{2} oxidation gave allylic alcohol 5^{6}. Sharpless asymmetric epoxidation ${ }^{3}$ of allylic alcohol 5 with L- (+)DET led to 6S, 7S- and 6R, 7R-epoxy alcohol in a ratio of ca. 10:1. Rearrangement of epoxy alcohol $6\left[[\alpha]_{D}{ }^{24}-6.4\left(c 0.75, \mathrm{CHCl}_{3}\right)\right]$ gave the title compound $\mathbf{1}$ in 90% yield as a colorless oil $\left[[\alpha]_{\mathrm{D}}{ }^{24}+6.0\left(c 0.80, \mathrm{CHCl}_{3}\right)\right]$. The spectral data of the title compound $\mathbf{1}$ was compatible with the assigned structures ${ }^{7}$.

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant NO. 29672015)

References and Notes

C. Zdero, F. Bohlmann, R. M. King, and H. Robinson, Phytochemistry, 1986, 25, 509.
R. Kaiser, and D. Lamparsky, Tetrahedron Lett., 1977, 7, 665.
a) T. Katsuki, and K. B. Sharpless, J. Am. Chem. Soc., 1980, 102, 5974.
b) Z. M. Wang, and W. S. Zhou, Tetrahedron, 1987, 43, 2935.
Z. S. Liu, J. Lan, and Y. L. Li, Tetrahedron: Asymmetry, 1998, 9, in press.

The enantiomeric excess of linalool was measured by $400 \mathrm{M}^{1} \mathrm{HNMR}$ analysis with $\mathrm{Eu}(\mathrm{hfc})_{3}$. M. Unbriet, and K. B. Sharpless, J. Am. Chem. Soc., 1977, 99, 5526. spectral data:
Compound 1: $[\alpha]_{\mathrm{D}}{ }^{24}+6.0\left(c\right.$ 0.80, $\left.\mathrm{CHCl}_{3}\right)$. IR: 3435, 3075, 2974, 2941, 1736, 1647, 1251,1020, $901 \mathrm{~cm}^{-1}$. EIMS $(\mathrm{m} / \mathrm{z}): 152(0.4 \%$, M-HOAc), 137 (4), 109 (5), 93 (7), 71 (58), 67 (65), 55 (23), 43 (100). ${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad \delta(\mathrm{ppm}) 5.93(\mathrm{dd}, \mathrm{J}=17.4 \mathrm{~Hz}$, $\mathrm{J}=10.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=), 5.14(\mathrm{~d}, \mathrm{~J}=17.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=), 5.11(\mathrm{~d}, \mathrm{~J}=10.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=), 4.93,4.84$ ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}=$), $4.03(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}), 2.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.05-1.92\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.82-$ $1.77\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.53\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ (ppm) 169.93, 147.06, 141.51, 113.28, 111.39, 82.73, 75.77, 35.65, 28.68, 23.63, 22.33, 17.33.

Received 18 August 1998

